github link
Accession IconGSE16333

Phytochrome Interacting Factors 4 and 5 redundantly limit seedling de-etiolation in continuous far-red light.

Organism Icon Arabidopsis thaliana
Sample Icon 18 Downloadable Samples
Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Submitter Supplied Information

Description
Phytochromes are red/far red photosensors regulating numerous developmental programs in plants. Among them phytochrome A (phyA) is essential to enable seedling de-etiolation in continuous far-red (FR) light a condition mimicking the environment under a dense canopy. The ecological relevance of this response is demonstrated by the high mortality rate of phyA mutants germinating in deep vegetational shade. phyA signaling involves a direct interaction of the photoreceptor with members of the bHLH transcription factor family, PIF1 and PIF3 (Phytochrome Interacting Factor). Here we investigated the involvement of PIF4 and PIF5 in phyA signaling and found that they redundantly control de-etiolation in FR light. The pif4pif5 double mutant is hypersensitive to low fluence rates of FR light. This phenotype is dependent on FR light perception by phyA but does not rely on alterations of the phyA level. Our microarrays analysis shows that PIF4 and PIF5 are part of an inhibitory mechanism repressing the expression of some light-responsive genes in the dark and are also needed for full expression of several growth-related genes in the light. Unlike PIF1 and PIF3, PIF4 and PIF5 are not degraded in response to FR light indicating that they are light-regulated by a different mechanism. Our genetic analysis suggests that this is achieved through the sequestration of these PIFs by the closely related bHLH transcription factor HFR1 (long Hypocotyl in FR light).
PubMed ID
Total Samples
18
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...