Description
To determine a gene/molecular fingerprint of multiple myeloma (MM) endothelial cells (MMECs), also identifying some of the vascular mechanisms that govern the malignant progression from quiescent monoclonal gammopathy of undetermined significance (MGUS). A comparative gene expression profiling (GEP) was carried out on patient-derived MMECs and MGUS endothelial cells (MGECs) using the Affymetrix U133A Arrays. Expression of selective vascular markers were also validated by RT-PCR and immunoblotting analysis in primary cultures of ECs isolated from total bone marrow (BM)-mononuclear cells. Twenty-two genes were found differently expressed in MMECs compared to MGECs (with 14 down-regulated and 8 up-regulated), thus proving that molecular differences were maintained in vitro. Specific pathways analysis revealed transcriptional and protein expression changes for key regulators of extracellular matrix formation and bone remodeling, cell-adhesion, chemotaxis, angiogenesis, resistance to apoptosis, and cell-cycle regulation. Specifically, we focused on six of these genes (DIRAS3, SERPINF1, SRPX, BNIP3, IER3 and SEPW1), which were not previously functionally correlated to the overangiogenic phenotype of MMECs and disease activity. These data identified distinct EC gene expression profiles and some vascular phenotypes that could influence the remodeling of the BM-microenvironment in patients with active MM. A better understanding of the linkage between genetic and epigenetic events in MM tumor/ECs may contribute to the molecular classification of the disease, thereby identifying selective targets of more effective anti-vessel/stroma therapeutic strategies.