Description
To model human cerebellar disease, we developed a novel, reproducible method to generate cerebellar Purkinje cells (PCs) from human pluripotent stem cells (hPSCs) that formed synapses when cultured with mouse granule cells and fired large calcium currents, measured with the genetically encoded calcium indicator jRGECO1a. Using translating ribosomal affinity purification (TRAP) to compare gene expression of differentiating hPSC-PCs to developing mouse PCs, we found hPSC-PCs to be most similar to late juvenile (P21) mouse PCs. Analysis of mouse PCs defined novel developmental expression patterns for mitochondria and autophagy associated genes, recapitulated in hPSC-PCs. We further identified species differences in gene expression and confirmed protein expression of CD40LG in native human, but not mouse PCs. This study provides a robust method for generating relatively mature hPSC-PCs with human specific gene expression and defines novel genetic features in comparison to the first comprehensive analysis of global gene expression patterns of postnatal mouse PC development.