Description
Our studies provide direct evidence that O-glycosylation pathways play a role in the regulation of cell growth through apoptosis and proliferation pathways. Eight small molecular weight analogues of the GalNAc-alpha-1-O-serine/threonine structure based on 1-benzyl-2-acetamido-2- deoxy-alpha-O-D-galactopyranoside have been synthesised and tested in 5 human colorectal cancer cell lines. Three inhibitors, 1-benzyl-2-acetamido-2-deoxy-alpha-O-D-galactopyranoside and the corresponding 2-azido- and C-glycoside analogues, were screened in two colorectal cancer cell lines at 0.5mM and showed induction of apoptosis. Proliferation was down regulated in the same two cell lines with all three inhibitors, as detected by Ki67 staining and gene array. Treatment both cell lines with inhibitors led to changes in glycosylation detected with peanut lectin. The competitive action of the inhibitors resulted in the intracellular formation of 28 aryl-glycan products which were identified by MALDI and electrospray mass spectroscopy. The structures found map onto known O-glycosylation biosynthetic pathways and showed a differential pattern for each of the inhibitors in both cell lines. Gene array analysis of the glycogenes illustrated a pattern of glycosytransferases that matched the glycan structures found in glycoproteins and aryl-glycans formed in the PC/AA/C1/SB10C cells, however there was no action of the three inhibitors on glycogene transcript levels. The inhibitors act at both intermediary metabolic and genomic levels, resulting in altered protein glycosylation and arylglycan formation. These events may play a part in growth arrest.