Description
Smokers weigh less and have less body fat than non-smokers, and increased body fat and weight gain are observed following smoking cessation. To assess a possible molecular mechanism underlying the inverse association between smoking and body weight, we hypothesized that smoking may induce the expression of a fat depleting gene in the airway epithelium, the cell population that takes the brunt of the stress of cigarette smoke. As a candidate gene we evaluated the expression of alpha2-zinc-glycoprotein1 (AZGP1), a soluble protein that stimulates lipolysis, induces a reduction in body fat in mice and is associated with the cachexia related to cancer, and is known to be expressed in secretory cells of lung epithelium. To assess if smoking upregulates AZGP1 expression, microarray analysis with TaqMan confirmation was used to evaluate large airway epithelial samples obtained by fiberoptic bronchoscopy from 37 normal smokers and 55 normal nonsmokers. Both microarray and TaqMan analysis demonstrated that AZGP1 mRNA levels were higher in the large airway epithelium of normal smokers compared to normal nonsmokers (p<0.05, all comparisons). Western analysis of airway biopsies of smokers compared with nonsmokers demonstrated upregulation of AZGP1 at the protein level, and immunohistochemical analysis demonstrated upregulation of AZGP1 in secretory as well as neuroendocrine cells of smokers. In the context that AZGP1 is involved in lipolysis and fat loss, its overexpression in the airway epithelium of chronic smokers may represent one mechanism for the weight difference in smokers vs nonsmokers.